深圳市源禹環(huán)??萍加邢薰?/strong>
電話:4008-656-678
傳真:0755-86000681-821
氮在廢水中以分子態(tài)氮、有機(jī)態(tài)氮、氨態(tài)氮、硝態(tài)氮、亞硝態(tài)氮以及硫氰化物和氰化物等多種形式存在,而氨氮是最主要的存在形式之一。
氨氮存在于許多工業(yè)廢水中,氨氮排入水體,特別是流動(dòng)較緩慢的湖泊、海灣,容易引起水中藻類及其他微生物大量繁殖,形成富營養(yǎng)化污染,除了會(huì)使自來水處理廠運(yùn)行困難,造成飲用水的異味外,嚴(yán)重時(shí)會(huì)使水中溶解氧下降,魚類大量死亡,甚至?xí)?dǎo)致湖泊的干涸滅亡[[i]]。
2007年太湖爆發(fā)的藍(lán)藻污染就是典型的氨氮污染事件。2007年5月16日,梅梁湖水質(zhì)變黑;22日,小灣里水廠停止供水;25日,貢湖水廠水質(zhì)尚滿足供水要求;28日,貢湖水廠水源地水質(zhì)嚴(yán)重惡化,水源惡臭,水質(zhì)發(fā)黑,溶解氧下降到0毫克每升,氨氮指標(biāo)上升到5毫克每升,居民自來水臭味嚴(yán)重。
氨氮還使給水消毒和工業(yè)循環(huán)水殺菌處理過程增大了用氯量;對(duì)某些金屬,特別是對(duì)銅具有腐蝕性;當(dāng)污水回用時(shí),再生水中氨氮可以促進(jìn)輸水管道和用水設(shè)備中微生物的繁殖,形成生物垢,堵塞管道和用水設(shè)備,并影響換熱效率[[ii]]。
為滿足公眾不斷提高的環(huán)境質(zhì)量要求,國家對(duì)氨氮制訂了越來越嚴(yán)格的排放標(biāo)準(zhǔn),研究開發(fā)經(jīng)濟(jì)、高效的除氮處理技術(shù)已成為水污染控制工程領(lǐng)域研究的重點(diǎn)和熱點(diǎn)[[iii]]。
一、水的氨氮污染情況和特點(diǎn)
(一)水的氨氮污染情況
隨著世界經(jīng)濟(jì)的發(fā)展和城市化的進(jìn)程,對(duì)水的需求量在不斷地增大,隨之而來的是廢水的排放量也日益增多,水體中的氨氮污染已引起國內(nèi)外社會(huì)各界的廣泛關(guān)注。據(jù)統(tǒng)計(jì),2003年全國廢水的排放總量為460.0億噸,其中工業(yè)廢水排放量為212. 4億噸, 氨氮的排放量為40.4萬噸;城鎮(zhèn)生活廢水的排放量為247. 6億噸,氨氮的排放量為89. 3萬噸。氨氮的大量排放,不僅造成了水環(huán)境的污染、水體富營養(yǎng)化及水體發(fā)生赤潮等現(xiàn)象,而且在工業(yè)廢水處理和回用工程中造成用水設(shè)備中微生物的繁殖而形成生物垢,堵塞管道和用水設(shè)備,影響熱交換。1995年,德國要求85%污水處理廠的外排廢水達(dá)到國家三級(jí)標(biāo)準(zhǔn)。1999年,在此標(biāo)準(zhǔn)基礎(chǔ)上還要求污水廠出水每2h取樣的混合水樣至少有80%滿足無機(jī)氮≤5mg/L。我國在1988年實(shí)施的地面水環(huán)境質(zhì)量標(biāo)準(zhǔn)GB3838-88中規(guī)定硝酸鹽、亞硝酸鹽、非離子氨和凱氏氮的標(biāo)準(zhǔn)。時(shí)隔11年,在GHZB1-1999增加了氨氮的排放標(biāo)準(zhǔn),在GB3838-2002標(biāo)準(zhǔn)中增加了總氮控制。各地的環(huán)保部門要求相關(guān)行業(yè)必須馬上建設(shè)脫氮設(shè)施,否則關(guān)閉工廠或增加排污費(fèi)的征收。由此可知氨氮處理的重要性。目前,國內(nèi)外有很多處理氨氮廢水的方法,為了避免重復(fù)建設(shè)和使用不成熟的技術(shù),分析當(dāng)前的技術(shù)進(jìn)展具有重要的現(xiàn)實(shí)意義。
(二)水的氨氮污染特點(diǎn)
水中的氮主要以氨氮、硝酸鹽氮、亞硝酸鹽氮和有機(jī)氮幾種形式存在。在特定條件下,如氧化和微生物活動(dòng),有機(jī)氮可能轉(zhuǎn)化為氨氮。好氧情況下,氨氮又可被硝化細(xì)菌氧化成亞硝酸鹽氮和硝酸鹽氮。
|
水中氨氮濃度并非固定不變,而是可在多種氮的存在形式間互相轉(zhuǎn)化。我國地面水環(huán)境質(zhì)量標(biāo)準(zhǔn)的說明中指出了水中三氮(氨氮、亞硝酸氮和硝酸氮)出現(xiàn)的水質(zhì)意義,見表2。
由表2可知,根據(jù)原水中三氮出現(xiàn)情況的不同,水質(zhì)呈現(xiàn)不同的污染特征。但只要水中有氨氮出現(xiàn),則表示水體受到新的污染,水體自凈尚未完成。自來水廠面對(duì)這樣的原水,為了保證飲用水安全,應(yīng)該采取相應(yīng)的水處理措施[[iv]]。
|
二、水中氨氮去除方法的機(jī)理和工藝
目前,水中氨氮的處理方法很多,其主要可分為兩大類:物理化學(xué)法和生物脫氮法。物理化學(xué)法有折點(diǎn)氯化法、化學(xué)沉淀法、吸附法、離子交換法、吹脫法和氣提法、液膜法、電滲析法、催化濕式氧化法等。生物法主要是利用微生物通過氨化、硝化、反硝化等一系列反應(yīng)使廢水中的氨氮最終轉(zhuǎn)化成無害的氮?dú)馀欧拧?/span>
(一) 物理化學(xué)法
1.折點(diǎn)氯化法
折點(diǎn)氯化法是將氯氣通入廢水中達(dá)到某一點(diǎn),在該點(diǎn)時(shí)水中游離氯含量較低,而氨的濃度降為零。當(dāng)氯氣通入量超過該點(diǎn)時(shí),水中的游離氯就會(huì)增多。因此,該點(diǎn)稱為折點(diǎn)。該狀態(tài)下的氯化稱為折點(diǎn)氯化。折點(diǎn)氯化法除氨的機(jī)理為氯氣與氨反應(yīng)生成無害的氮?dú)?其反應(yīng)方程式為: [[v]]
Cl2 + H2O→HOCL+H+ +Cl –
NH4+ + HOCl→NH2Cl (一氯胺) + H2O + H+
NH2Cl + HOCl→NHCl2 (二氯胺) + H2O→
NHCl2 + HOCl→NCl3 (三氯胺) + H2O
NH4+ + 3HOCl→N2↑+ 5H+ + 3Cl + 3H2O
N2逸入大氣,使反應(yīng)源源不斷向右進(jìn)行。加氯比例: mcl2與mNH3-N之比為8 :l - 10 :1 。當(dāng)氨氮濃度小于20 mg/ L 時(shí),脫氮率大于90 % ,pH 影響較大,pH 高時(shí)產(chǎn)生NO3- ,低時(shí)產(chǎn)生NCl3 ,將消耗氯,通??刂苝 H 在6-8 [[vi]]。
此法用于廢水的深度處理,脫氮率高、設(shè)備投資少、反應(yīng)迅速完全,并有消毒作用。但液氯安全使用和貯存要求高,對(duì)p H 要求也很高,產(chǎn)生的水需加堿中和,因此處理成本高。另外副產(chǎn)物氯胺和氯代有機(jī)物會(huì)造成二次污染 [[vii]]。
2.化學(xué)沉淀(MAP) 法
在一定的pH條件下,水中的Mg2+ 、HPO43- 和NH4+可以生成磷酸銨鎂沉淀[[viii]],而使銨離子從水中分離出來。
影響沉淀效果的因素有沉淀劑種類及配比、pH值、廢水中的初始氨的濃度、干擾組分等。
有研究表明沉淀法去除廢水中氨氮的pH值為10.0 ,物質(zhì)的量之比Mg∶N= 1.2、P:N = 1. 02 時(shí)沉淀效果最好,氨氮去除率達(dá)到90 % [[ix]] 。
趙慶良等[[x]]研究表明,MgCl2 ·6H2O 和Na2HPO4·12H2O 組合沉淀劑優(yōu)于MgO 和H3PO4 組合,垃圾滲濾液中的氨氮質(zhì)量濃度可由5618 mg/ L 降低到65 mg/ L。
李芙蓉等[[xi]]采用氧化鎂和磷酸作為沉淀劑去除煤氣洗滌循環(huán)水中高濃度的氨氮,效果良好。
李才輝等[[xii]]對(duì)MAP 法處理氨氮廢水的工藝進(jìn)行優(yōu)化,研究表明氨氮的去除率隨著反應(yīng)時(shí)間的增加而增加,隨著Mg∶N 比值的增加而增加。
劉小瀾[[xiii]]探討了不同操作條件對(duì)氨氮去除率的影響,在pH值為8.5-9. 5 的條件下,投加的藥劑Mg2+:NH4+ ∶PO43- (摩爾比)為1. 4∶1∶0. 8 時(shí),廢水氨氮的去除率達(dá)99 %以上,出水氨氮的質(zhì)量濃度由2 g/ L 降至15 mg/ L。
國外對(duì)用化學(xué)沉淀法去除廢水中的氨氮也有較多研究。
Stratful等[[xiv]]詳細(xì)研究了影響磷酸銨鎂沉淀及晶體生長的因素,得出4點(diǎn)結(jié)論:
(1)過量的銨離子對(duì)形成磷酸銨鎂沉淀有利;
(2)鎂離子可能是形成磷酸銨鎂沉淀的限制因素;
(3)如果要想從廢水中回收磷酸銨鎂,需要得到比較大的晶體顆粒,則至少需要3 h 的結(jié)晶時(shí)間;
(4)沉淀的pH 值應(yīng)大于8. 5。
Battistoni 等[[xv]]進(jìn)行了用化學(xué)沉淀法從廢水厭氧消化后的上清液中同時(shí)回收氮和磷的研究。廢水厭氧消化過程中,有機(jī)物中的氮和磷被微生物分解為無機(jī)的磷酸鹽和氨氮,添加MgO 可以生成磷酸銨鎂沉淀可回收磷和氮。
Lind 等[[xvi]]則進(jìn)行了用磷酸銨鎂沉淀法從人的尿液中回收營養(yǎng)物質(zhì)的研究,可以回收65. 0 % -80. 0 %的氮。
化學(xué)沉淀法的最大優(yōu)點(diǎn)是可以回收廢水中的氨,所生成的沉淀可以作為復(fù)合肥而利用。存在的主要問題是沉淀劑的用量較大,需要對(duì)廢水的pH 進(jìn)行調(diào)整,另外有時(shí)生成的沉淀顆粒細(xì)小或是絮狀體,工業(yè)中固液分離有一定困難。
(二) 生物脫氮法
1. 傳統(tǒng)硝化反硝化
傳統(tǒng)硝化反硝化工藝脫氮處理過程包括硝化和反硝化兩個(gè)階段。在將有機(jī)氮轉(zhuǎn)化為氨氮的基礎(chǔ)上,硝化階段是將污水中的氨氮氧化為亞硝酸鹽氮或硝酸鹽氮的過程;反硝化階段是將硝化過程中產(chǎn)生的硝酸鹽或亞硝酸鹽還原成氮?dú)獾倪^程。只有當(dāng)廢水中的氮以亞硝酸鹽氮和硝酸鹽氮的形態(tài)存在時(shí),僅需反硝化一個(gè)階段。
盡管傳統(tǒng)硝化反硝化工藝脫氮在廢水脫氮方面起到了一定的作用,但仍存在以下問題:
(1)硝化菌群增殖速度慢且難以維持較高生物濃度,特別是在低溫冬季。因此造成系統(tǒng)總水力停留時(shí)間(HRT) 長,有機(jī)負(fù)荷較低,增加了基建投資和運(yùn)行費(fèi)用;
(2)硝化過程是在有氧條件下完成的,需要大量的能耗;
(3)反硝化過程需要一定的有機(jī)物,廢水中的COD 經(jīng)過曝氣有一大部分被去除,因此反硝化時(shí)往往要另外加入碳源(例如甲醇) ;
(4)系統(tǒng)為維持較高生物濃度及獲得良好的脫氮效果,必須同時(shí)進(jìn)行污泥回流和硝化液回流,增加了動(dòng)力消耗及運(yùn)行費(fèi)用;
(5)抗沖擊能力弱,高濃度氨氮和亞硝酸鹽進(jìn)水會(huì)抑制硝化菌的生長;
(6)為中和硝化過程產(chǎn)生的酸度,需要加堿中和,增加了處理費(fèi)用。
由于傳統(tǒng)硝化反硝化具有一些弊端,國內(nèi)外一些學(xué)者研究的熱點(diǎn)集中在如何改進(jìn)傳統(tǒng)的硝化反硝化工藝。近年來研究成果主要有短程硝化反硝化、厭氧氨氧化、同時(shí)硝化反硝化、反硝化除磷等。
2. 短程硝化反硝化
短程硝化反硝化又稱亞硝化反硝化,把硝化反應(yīng)過程控制在氨氧化產(chǎn)生NO2-的階段, 阻止NO2-進(jìn)一步氧化, 直接以NO2-作為菌體呼吸鏈氫受體進(jìn)行反硝化。此過程減少了亞硝酸鹽氧化成硝酸鹽,然后硝酸鹽再還原成亞硝酸鹽兩個(gè)反應(yīng)的發(fā)生,降低了需氧量、反硝化過程中有機(jī)碳的投入量,降低了能耗和運(yùn)行費(fèi)用。
短程硝化反硝化與傳統(tǒng)的生物脫氮相比具有以下優(yōu)點(diǎn):
(1)于活性污泥法,可以節(jié)省25 %的供養(yǎng)量, 降低能耗;
(2)節(jié)省反硝化所需碳源40% ,在C/ N一定的情況下可提高總氮的去除率;
(3)減少污泥量可達(dá)50 %;
(4)減少堿耗;
(5)提高反應(yīng)速率,縮短反應(yīng)時(shí)間,減少反應(yīng)器容積。
實(shí)現(xiàn)短程硝化與反硝化的關(guān)鍵是抑制硝化菌的活性而使NO2-得到累積。影響硝化菌活性及NO2-累積的因素有自由氨、pH、DO、溫度等。
三、未來展望
氨氮是廢水治理的重要研究對(duì)象之一,人們對(duì)此正在不斷嘗試物理、化學(xué)、生物等多種工藝技術(shù)的開發(fā)應(yīng)用。鑒于各種方法存在的問題及其開發(fā)前景,今后氨氮廢水的研究應(yīng)著重考慮以下幾個(gè)方面:
(1) 廉價(jià)沉淀劑的開發(fā),包括磷源、鎂源的開發(fā)研究及循環(huán)利用。
(2) 優(yōu)化吸附劑的性能,延長其使用周期及壽命。
(3) 深入研究微生物法去除氨氮,馴化高效功能菌種。
(4) 復(fù)合工藝取代單一工藝徹底去除廢水中氨氮。
(5) 擴(kuò)大實(shí)驗(yàn)研究的工業(yè)化應(yīng)用。
結(jié)束語
參考文獻(xiàn):
[[i]] 錢易等. 環(huán)境保護(hù)與可持續(xù)發(fā)展[M] . 北京:高等教育出版社,2000 ,50 - 51[[ii]] 周彤等. 污水的零費(fèi)用脫氨[J ] . 給水排水,2000 ,26(2) :37 - 39
[[xi]] 李芙蓉,宋玨容,雷俊峽,等. 化學(xué)沉淀法脫除廢水中高濃度氨氮的試驗(yàn)研究. 武漢工業(yè)學(xué)院學(xué)報(bào),2004 ,23(3) :41 43
[[xiv]] Stratful I ,Scrimshaw M D , Lester J N. Conditions influencing the precipitation of magnesium ammonium phosphate. Water Research ,2001 ,35(17) :4191-4199
上一篇: 工業(yè)廢水處理的十大難題
下一篇: 14種工業(yè)廢水處理方法簡述